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Abstract
In our first paper, we showed how a non-local effective Hamiltonian for
short-ranged wetting may be derived from an underlying Landau–Ginzburg–
Wilson model. Here, we combine the Green’s function method with standard
perturbation theory to determine the general diagrammatic form of the binding
potential functional beyond the double-parabola approximation for the Landau–
Ginzburg–Wilson bulk potential. The main influence of cubic and quartic
interactions is simply to alter the coefficients of the double parabola-like zigzag
diagrams and also to introduce curvature and tube-interaction corrections (also
represented diagrammatically), which are of minor importance. Non-locality
generates effective long-ranged many-body interfacial interactions due to the
reflection of tube-like fluctuations from the wall. Alternative wall boundary
conditions (with a surface field and enhancement) and the diagrammatic
description of tricritical wetting are also discussed.

1. Introduction

In [1], we showed how a non-local interfacial Hamiltonian for short-ranged wetting [2] may
be derived from a Landau–Ginzburg–Wilson model using a diagrammatic formalism based on
Green’s functions [3]. While the definition of the interfacial model is the same as that forwarded
by other authors [4–6], its evaluation is non-perturbative in the interfacial gradient and reveals
important non-local features. This has a number of advantages [7, 8] over previous, local
approximations, and appears to overcome a series of problems associated with short-ranged
wetting [4–15]. The interaction of the interface and wall is described by a binding potential
functional W which has an elegant diagrammatic expansion

W = a1 + b1 + · · · (1)
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and an appealing physical interpretation as tube-like fluctuations [16] which zigzag between
the surfaces.

In this paper, we demonstrate the robustness of the diagrammatic expansion by extending
the derivation beyond the double-parabola (DP) approximation for the bulk thermodynamic
potential appearing in the Landau–Ginzburg–Wilson (LGW) Hamiltonian. We establish the
general form of the asymptotic expansion of W , which now includes diagrams representing
curvature corrections and tube–tube interactions. However, these are of negligible importance
and the above diagrammatic expression remains valid, albeit with numerical changes to the
values of the coefficients a1 and b1, which can be determined exactly.

Our article is arranged as follows: after recapping briefly the central results of [1],
sections 3–6 describe the detailed derivation of W beyond DP using the same diagrammatic
formalism. The proof is rather technical and, to simplify things, we continue using fixed
boundary conditions at the wall until the final section. Sections 7–9 are a lengthy discussion
of the interpretation of the model and the evaluation of the diagrams for wetting transitions at
planar walls which extends the analysis given in [1]. In particular, non-locality is shown to
induce weak but long-ranged two-body interactions describing the repulsion of the interface
from the wall. Alternative forms of boundary conditions, including coupling to an external
surface field and enhancement [17] and diagrams describing tricritical wetting, are also
discussed.

2. Wetting diagrams within the double-parabola approximation

We begin with some general considerations. Imagine a system bounded by a wall described by
a height function ψ(x)measured above some reference plane with parallel vector displacement
x = (x, y) (see figure 1). The wall is in contact with a fluid phase α but preferentially adsorbs
a fluid phase β which forms a thin film intervening between the bulk α phase and the wall.
Throughout our paper, we will restrict our attention to the case of bulk two-phase coexistence,
although it is easy to extend the analysis to non-zero values of the bulk ordering field. For
systems with short-ranged forces, a convenient microscopic starting point for studying this is
the continuum LGW Hamiltonian

H [m] =
∫

dr
{

1
2 (∇m)2 +�φ(m)

}
(2)

based on a magnetization-like order parameter m(r). A bulk potential φ(m) describes the
coexistence of the phases α and β , which, on imposing Ising symmetry, we identify with
the spontaneous magnetizations −m0 and +m0 respectively. The relative potential �φ(m) =
φ(m) − φ(m0) is introduced to remove from the total free energy a contribution proportional
to the volume.

From (2), we wish to derive the form of an interfacial Hamiltonian pertinent to an ‘m4’
bulk potential

φ(m) = −r

2
m2 + u

4
m4 (3)

below the bulk critical temperature (see figure 2). Bulk-like fluctuations are treated in mean-
field fashion, so the latter condition implies r > 0. Written in terms of the mean-field
spontaneous magnetization m0 = √

r/u, and inverse bulk correlation length κ = √
2r , the

relative potential is

�φ(m) = κ2

8m2
0

(
m2 − m2

0

)2
. (4)

2
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Figure 1. Schematic diagram showing a wetting layer of phase β at a non-planar wall–α interface.
Here, �(x) and ψ(x) are the interfacial collective coordinate and wall height, respectively.

(This figure is in colour only in the electronic version)

For later purposes, it is convenient to re-express this as

�φ(m) = κ2

2
δm2

{
1 + δm

m0
+ 1

4

δm2

m2
0

}
(5)

where we have defined δm = |m| − m0. A much easier starting point for analysis is the DP
approximation [18]

�φ(0)(m) = κ2

2
(|m| − m0)

2 (6)

in which one neglects the higher-order cubic and quartic terms [4] (see figure 2). The
superscript indicates that the LGW model with a DP potential is the starting point for our
perturbation theory. We define the reference Hamiltonian

H (0)[m] =
∫

dr
{

1
2 (∇m)2 +�φ(0)(m)

}
. (7)

Finally, we adopt the simplest choice of boundary condition corresponding to fixed surface
magnetization. Thus, if rψ = (x, ψ(x)) denotes an arbitrary point on the wall, we require

m(rψ) = m1, (8)

for a fixed value of m1. Without loss of generality, we set m1 > 0 so that the wall preferentially
adsorbs a thin layer of net positive (β-like) magnetization. For both the DP and the full ‘m4’
models, the mean-field wetting phase boundary, as defined for a planar wall, corresponds to
m1 = m0. That is, for m1 < m0 the planar wall–β interface is partially wetted (with finite
contact angle θ ) and the α|β interface unbinds continuously as m1 → m−

0 . The wall is
completely wetted by the β phase for m1 > m0, corresponding to θ = 0. Note that, with these
boundary conditions, first-order and tricritical wetting transitions do not arise. It is convenient
to introduce a dimensionless temperature-like scaling field

t = m1 − m0

m0
(9)

which measures the deviation from the three-dimensional critical wetting phase boundary.
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Δφ(m)

mm0
-m0

"m
4
"

DP

Figure 2. The relative potential �φ(m) in the ‘m4’ theory (4) and DP approximation (6) at bulk
coexistence.

Following Fisher and Jin [4, 5] we define the interfacial co-ordinate �(x) using a crossing
criterion and consider constrained profiles which have a surface of iso-magnetization m X = 0
at some prescribed interfacial configuration:

m(r�) = 0 (10)

for all points r� = (x, �(x)). Starting from a suitable microscopic model H [m], the interfacial
Hamiltonian H [�,ψ] is defined via a partial trace over this class of constrained profiles. A
saddle point approximation leads to the Fisher–Jin identification

H [�,ψ] = H [m�(r)] − Fwβ[ψ] (11)

where Fwβ[ψ] is the excess free energy of the wall–β interface. Here m�(r) is the constrained
profile that minimizes the LGW Hamiltonian with the appropriate boundary conditions at the
interface and wall and in the bulk. That is, the constrained profile satisfies the variational
equation

δH [m]
δm

∣∣∣∣∣
m�(r)

= 0. (12)

We now focus on the properties of the DP model (7), summarizing the main results of our
previous article. The variational equation (12) leads to the Helmholz equation

∇2δm(0)
� = κ2δm(0)

� (13)

where δm� ≡ |m�|−m0. Again, the superscript (not used in [1]) serves to indicate that the DP
potential is the zeroth-order term in a perturbative expansion. The linearity of these equations
simplifies considerably the derivation of the non-local model. Making use of the divergence
theorem,

H (0)[m(0)
� ] = −δm1

2

∫
ψ

dsψ ∇m(0)
� · nψ − m0

2

∫
�−

ds� ∇m(0)
� · n� − m0

2

∫
�+

ds� ∇m(0)
� · n�

(14)

4
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contains only surface terms. Here, δm1 = m1 − m0 while nψ and n� denote the (local)
unit normals at the wall and interface respectively, pointing into the bulk. Similarly, the
infinitesimals dsψ and ds� represent local area elements at the wall and interface. The solutions
to the Helmholtz equations in the bulk (m� < 0) and wetting (m� > 0) regions are written in
terms of the Green’s function

K (r1, r2) = κ

2π |r1 − r2|e−κ |r1−r2| (15)

which satisfies the Ornstein–Zernike-like equation

(−∇2
r1

+ κ2) K (r1, r2) = 2κδ(r1 − r2) (16)

and decays to zero as |r1 − r2| → ∞. We represent this Green’s function diagrammatically by
a straight thick line with the open circles denoting the end points

K (r1, r2) = . (17)

Using the Green’s function, we identify the constrained magnetization m(0)
� in the bulk region

m(0)
� = −m0 + m0 (18)

and, within the wetting layer, via the expansion

δm(0)
� = −m0

(
− + − · · ·

)
+ δm1

(
− + − · · ·

)
.

(19)

In this diagrammatic notation, the wavy lines represent the constrained interfacial configuration
(top) and wall (bottom), while a black dot on a surface means one must integrate over all points
on that surface with the appropriate infinitesimal area element. These expressions are exact
solutions to the Helmholtz equations, and satisfy the boundary conditions at the interface and
wall to exponentially accurate order in the radii of curvature.

After substituting into (14) and making use of the method of images, we arrive at the
desired result

H (0)[�,ψ] = H (0)
αβ [�] + W (0)[�,ψ] (20)

where

H (0)
αβ [�] = 

(0)
αβ Aαβ (21)

is the interfacial Hamiltonian of the free α|β interface, Aαβ is the interfacial area and (0)
αβ =

κm2
0 is the DP result for the interfacial tension. The binding potential functional is given by

W (0)[�,ψ] =
∞∑

n=1

{
a(0)1 �n

n + b(0)1 �n+1
n + b(0)2 �n

n+1

}
(22)

with geometry independent coefficients

a(0)1

κm2
0

= 2 t,
b(0)1

κm2
0

= 1,
b(0)2

κm2
0

= t2 (23)

and �νμ correspond to surface integrals over products of the kernel K . The diagrammatic and
algebraic representations of the first three terms are

�1
1[�,ψ] = =

∫ ∫
dsψ ds� K (rψ, r�) (24)

�2
1[�,ψ] = =

∫
dsψ

{∫
ds� K (rψ, r�)

}2

(25)

�1
2[�,ψ] = =

∫
ds�

{∫
dsψK (rψ, r�)

}2

(26)

5
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although for certain configurations further simplification is possible (see later). All diagrams
have a zigzag structure, for example,

�2
2[�,ψ] = , �3

2[�,ψ] = .

Thus, up to ‘two tubes’, the asymptotic expansion of W is

W (0) = a(0)1 + b(0)1 + b(0)2 + · · · (27)

with the higher-order terms resumming to give the hard-wall repulsion of the wall.
The coefficient of each diagram �νμ has the dimensions of a surface tension and exhibits a

power-law dependence on the scaling field t . A handy rule to remember is that the power of t
is the same as the number of black dots on the wall that are singly connected, i.e. have only one
kernel K attached to them. This rule also applies to all diagrams containing only black dots
which will be generated in the perturbation series described next.

One also generates an expression for the excess free energy of the wall–β interface

F (0)
wβ [ψ] = 

(0)
wβ Aw + C (0)

wβ

∫
dsψ

{
1

Rψ1
+ 1

Rψ2

}
(28)

which depends on the area Aw and the mean curvature of the wall. The latter are expressed in
terms of the local principal radii of curvature Rψ1 and Rψ2 . The tension and rigidity are given
by (0)

wβ = κ m2
0 t2/2 and C (0)

wβ = m2
0 t2/4 respectively.

Finally, for wetting at planar substrates (ψ = 0) the non-local model recovers the known
form of the approximate local interfacial Hamiltonian when ∇� � 1. We find

H (0)[�] ≈
∫

dx
{
(0)(�)

2
(∇�)2 + W (0)

π (�)

}
+ 

(0)
αβ Aw (29)

where Wπ (�) and (�) = αβ + �(�) are the binding potential function and effective
position-dependent stiffness, respectively. Within the DP approximation,

W (0)
π (�) = w

(0)
10 e−κ� +w

(0)
20 e−2κ� + · · · (30)

and

�(0)(�) = s(0)10 e−κ� + s(0)21 κ�e
−2κ� + · · · (31)

and are identical to the findings of Fisher and Jin [4, 5], who derived the small gradient (local)
limit (29) directly. The coefficients appearing in these expressions are determined by the
coefficients of the binding potential functional. Thus, we identify w(0)10 = s(0)10 = a(0)1 while
w
(0)
20 = b(0)1 + b(0)2 , and s(0)21 = −2b(0)1 . We now wish to see how the above results are altered

when one goes beyond the DP approximation.

3. Feynman–Hellman theorem and perturbation theory

Let us suppose that our microscopic model H [m] can be written

H [m] = H (0)[m] + ε H (1)[m] (32)

containing a dimensionless field ε, which will later act as a small parameter. The reference
Hamiltonian is the DP model, while

H (1)[m] =
∫

dr ��(1)(m) (33)

6



J. Phys.: Condens. Matter 19 (2007) 416105 A O Parry et al

accounts for cubic and quartic corrections obtained by writing

�φ(m) = κ2 (|m| − m0)
2

2
+ ε ��(1)(m) (34)

with

��(1)(m) = κ2

2
δm2

(
δm

m0
+ 1

4

δm2

m2
0

)
. (35)

Thus, the potential (34) interpolates between the DP model (ε = 0) and the ‘m4’ model
(ε = 1). Recall that the interfacial model is identified by evaluating H [m] at the constrained
magnetization m�. Taking the derivative of the constrained Hamiltonian

dH [m�]
dε

= H (1)[m�] +
∫

dr
δH

δm

∣∣∣∣
m�

dm�

dε
(36)

which, by virtue of the variational condition (12), leads to the familiar expression
dH [m�]

dε
=
∫

dr��(1)(m�), (37)

similar to the well known Feynman–Hellman theorem in standard quantum mechanics. Note
that the functional on the RHS depends on the full (ε-dependent) constrained magnetization
and is a convenient means of formulating a perturbation expansion

H [m�] = H (0)[m(0)
� ] + ε H̃ (1) + ε2 H̃ (2) + · · · . (38)

From this, it is straightforward to determine the corresponding expansion for the binding
potential functional

W [�,ψ] = W (0)[�,ψ] + εW (1)[�,ψ] + ε2 W (2)[�,ψ] + · · · (39)

where the leading-order term is the DP result (22). In addition, we will also be able to compute
expansions for the free interface Hαβ[�] and the excess free energy of the wall–β interface
Fwβ[ψ].

To determine the first-order and second-order perturbation functionals H̃ (1) and H̃ (2), we
return to the Euler–Lagrange equation for the constrained profile

∇2δm� = κ2δm� + ε
∂��(1)(m�)

∂m
(40)

and seek a perturbative solution

δm�(r; ε) = δm(0)
� (r)+ εδm(1)

� (r)+ · · · . (41)

By definition, the leading-order term is the DP result, which satisfies the Helmholtz
equation (13), while the first-order correction satisfies the inhomogeneous PDE

∇2δm(1)
� = κ2 δm(1)

� + ∂��(1)(m(0)
� )

∂m
(42)

and vanishes at the interface, the wall, and infinity. Combining these, we obtain

H̃ (1)[�,ψ] =
∫

dr��(1)(m(0)
� ) (43)

and

H̃ (2)[�,ψ] = 1

2

∫
dr δm(1)

�

∂��(1)(m(0)
� )

∂m
. (44)

A simplifying feature of the first-order correction is that it only depends on the zeroth-order
profile m(0)

� as calculated within the DP approximation. We begin with such a calculation for
some preliminary quantities.

7
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4. First-order perturbation theory for the free Hamiltonian

Consider a free but constrained configuration of the α|β interface. That is, the interface is
infinitely far from any confining wall but the magnetization is constrained to be zero along a
surface at height �(x). Bulk phases α and β lie above and below the interface respectively. The
interface partitions the system into two regions whose order-parameter fluctuations are shielded
from each other, by virtue of the crossing criterion. The zeroth-order DP expressions for the
position-dependent magnetizations in these regions are

m(0)
� (r) = −m0 + m0 (45)

and

m(0)
� (r) = m0 − m0 (46)

above and below the interface respectively. The first-order result for the free interfacial
Hamiltonian is

Hαβ[�] = H (0)
αβ [�] + ε

∫
dr��(1)(m(0)

� )+ · · · (47)

where the first term is simply the zeroth-order DP result H (0)
αβ [�] = 

(0)
αβ Aαβ . Hence,

Hαβ[�] = 
(0)
αβ Aαβ + ε κ m2

0

{− 1
2 − 1

2 + 1
8 + 1

8

}
(48)

where we have expressed the results diagrammatically. The single wavy line represents the free
interface while the thick straight lines denote the Green’s function K . The diagrams appearing
in this formula are all of the same type and have n = 3, 4 (black) dots on the interface and one
(black) dot either above or below the surface. They correspond to multi-dimensional integrals.
For example,

= κ

∫
V+

dr
{∫

ds� K (r�, r)
}4

(49)

where, in general, the integrand contains n kernels K connecting a point off the interface to n
different points on it. Black dots on the surface have the same interpretation as before—one
must integrate over all points on the surface with the appropriate area element. A black point
off the surface means that one must integrate over the appropriate semi-volume V+ (here above
the interface) together with a multiplicative factor of κ . The latter is introduced so that the
diagram has the dimensions of area. Again, each kernel may be thought of as representing a
short tube-like fluctuation protruding from the surface, only a few bulk correlation lengths long
(since the kernel decays exponentially quickly). Such fluctuations can be thought of as giving
the interface a ‘corona’. As we shall show, these shift the DP expression for the surface tension
and also introduce curvature corrections. To see this, consider first the case of a planar interface
of (infinite) area Aαβ . By definition, the value of the Hamiltonian per unit area is equal to the
surface tension, so we can identify

αβ(ε) = 
(0)
αβ + κm2

0 ε

Aαβ

{
− + 1

4

}
. (50)

The integrals are easily performed

= Aαβ
3

= Aαβ
4

(51)

which implies the tension is shifted to

αβ(ε) = κ m2
0

{
1 + ε

(− 1
3 + 1

16

)+ · · ·} (52)

8
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where we have highlighted the different numerical contributions for the cubic and quartic
perturbations. Setting ε = 1, we findαβ ≈ 0.72 κ m2

0, which is in much better agreement with
the mean-field expression αβ = (2/3)κm2

0 of the full ‘m4’ theory [19]. Thus, the dominant
numerical correction to the DP expression for the surface tension arises from the cubic term in
�φ(1) and is accurately accounted for by first-order perturbation theory. This point is further
amplified by calculating exactly the mean-field surface tension αβ(ε) for the potential (34):

αβ(ε)

κm2
0

=
(

4

3ε
− 2

)(√
4 − 3ε − 2

)
+ 4(1 − ε)√

ε
ln

2(1 + √
ε)√

4 − 3ε + √
ε
. (53)

It is straightforward to check that this is consistent with the limiting cases at ε = 1 and 0
respectively, and also reproduces the perturbation expansion (52). While this function looks
rather ominous, it is almost linear in character over the required domain.

In addition to correcting the value of the surface tension, the ‘corona’ diagrams lead to
curvature terms, which reveal the more general structure of the free Hamiltonian. To appreciate
this, consider the case of an undulating interfacial profile. Provided the local principal radii of
curvature R �

1 (x) and R �
2 (x), are always large, one can expand the integrals to find

Hαβ[�] =
∫

ds�

{
αβ + καβ

2

(
1

R�1
+ 1

R�2

)2

+ κ̄αβ

R�1 R�2
+ · · ·

}
(54)

where καβ = εm2
0/64κ and κ̄αβ = −εm2

0/128κ are the bending rigidity and saddle-splay
coefficients of the square mean curvature and Gaussian curvature, respectively [20, 21]. The
notation here is similar to that adopted by Blokhuis and Bedeaux [21], although we have added
a subscript to try to avoid confusion with the inverse bulk correlation length. Note there is no
term proportional to the mean curvature as required by the Ising symmetry.

A similar calculation reveals the general structure of the wall–β interfacial free energy.
Consider the interface between a wall described by the height function ψ(x) and the bulk β
phase corresponding to spontaneous magnetization m0. Recall that the magnetization at the
surface m1 is positive so that this interface does not exhibit any wetting behaviour. The DP
result, equation (28), for the excess free energy involves only the area and local mean curvature
of the wall. No higher order curvature corrections are present. Beyond the DP approximation,
we may reasonably expect this to change with the cubic and quartic interactions, giving rise to
additional curvature contributions. The perturbation theory is very similar to that described for
the free interface and, to first order, we find

Fwβ[ψ] = F (0)
wβ [ψ] + ε

κm2
0

2

{
t3 + t4

4

}
+ · · · (55)

where this time the wavy line denotes the shape of the bounding wall. The diagrams are easily
evaluated as an expansion in the inverse principal radii of curvature at the wall, and we find

Fwβ[ψ] =
∫

dsψ

⎧⎨
⎩wβ + Cwβ

(
1

Rψ1
+ 1

Rψ2

)
+ κwβ

2

(
1

Rψ1
+ 1

Rψ2

)2

+ κ̄wβ

Rψ1 Rψ2
+ · · ·

⎫⎬
⎭ (56)

where the ellipses denote higher-order terms in the curvature. The new surface tension wβ
and bending rigidity coefficient Cwβ contain very small corrections of order O(ε t3) to the DP
results quoted earlier. The new rigidities κwβ ∼ κ̄wβ are O(ε t3) and are considerably smaller
in magnitude than Cwβ .

Note that the expression for the free energy Fwβ , for the present m4-theory contains higher-
order inverse powers of the local radii of curvature. This appears to rule out the morphological
hypothesis of König et al [22], which suggests that the series truncates. Interestingly, however,
truncation does occur at DP level where κwβ and higher coefficients are all zero.

9
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5. First-order perturbation theory for W [�, ψ]
5.1. General equations

To begin, we restate the perturbation theory for the bulk potential in a slightly more general
way. The calculation of the non-local binding potential only requires us to specify the form of
the bulk potential in the wetting layer region where m > 0. We write

�φ(m) = κ2δm2

2
+

∞∑
n=3

εn κ
2 m2−n

0 δmn (57)

where δm = m − m0 and the εn are all dimensionless parameters. Thus, the usual ‘m4’ theory
corresponds to ε3 = 1

2 , ε4 = 1
8 and εn = 0 for n > 4. To first order in perturbation theory, all

the contributions are additive and we seek to write the non-local binding potential functional

W [�,ψ] = W (0)[�,ψ] +
∞∑

n=3

εn W (1)
n [�,ψ] + · · · (58)

where, in an obvious notation, the W (1)
n are the perturbations corresponding to the term δmn in

the bulk potential. To determine these, it is convenient to order the expansion of δm(0)
� in the

number of tubes that span the interfaces

δm(0)
� =

(
δm1 − m0

)
−
(
δm1 − m0

)

+
(
δm1 − m0

)
− · · · . (59)

From (43), it follows that the first-order perturbations are given by

W (1)
n [�,ψ] = κ2 m2−n

0

∫
Vβ

dr
(
δm(0)

�

)n − A(1)n [�] − B(1)
n [ψ] (60)

where Vβ denotes the volume of the wetting layer between the wall and interface. The
functionals A[�] and B[ψ] do not describe interactions between the interface and wall and
are introduced so that W vanishes for infinite separation. For example,

A(1)4 [�] = (−1)4κ m2
0 (61)

B(1)
4 [ψ] = κ m2

0 t4 (62)

where, in each case, the wavy line denotes a configuration of the surface that corresponds to
the argument of the functional. All that remains now is the evaluation of the integrals and the
classification and simplification of the ensuing wetting diagrams.

5.2. Wetting diagrams for cubic and quartic interactions

Substituting the magnetization profile into the first-order perturbation expression (60) for n = 3
and 4 leads to the following expressions for the first-order cubic and quartic corrections to the
DP functional:

W (1)
3

κm2
0

= 3t
(

−
)

− 3t2
(

−
)

+ 3
(

−
)

− 3t3
(

−
)

+ 3t
(

− 2
)

− 3t2
(

− 2
)

(63)

10
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and
W (1)

4

κm2
0

= −4t
(

−
)

− 4t3
(

−
)

− 4
(

−
)

− 4t4
(

−
)

+ 6t2
(

− 2
)

+ 6t2
(

− 2
)

+ 6t2 . (64)

Higher-order diagrams exist but involve at least three tubes that span the surfaces and
would generate terms of order O(e−3κ�) in the standard binding potential function. Each of the
new wetting diagrams has one black dot lying between the surfaces and represents an integral
over the volume Vβ of the wetting layer. The associated infinitesimal measure is κdr. Thus, the
first wetting diagram in the expansion of W (1)

3 is

= κ

∫
dsψ

∫
Vβ

dr K (rψ, r)
{∫

ds�K (r, r�)
}2

(65)

where we have labelled the points in an obvious notation. It is natural to interpret this as a
splitting of a tube-like fluctuation connecting the surfaces. The second diagram in the same
cubic interaction does not involve a splitting but instead adds a ‘corona’ corresponding to short
tube-like fluctuations away from the interface:

= κ

∫ ∫ ∫
Vβ

dsψ ds′
� dr K (rψ, r′

�) K (r′
�, r)

{∫
ds�K (r, r�)

}2

. (66)

Similar interpretations apply to all the wetting diagrams. One contribution which is of particular
novelty is the X diagram

= κ

∫ ∫ ∫ ∫ ∫
Vβ

dsψ ds′
ψ ds� ds′

� dr K (rψ, r) K (r′
ψ, r) K (r, r�) K (r, r′

�) (67)

and arises from the quartic interaction. This has an appealing physical interpretation as a local
pinching of two tubes that span the surfaces. As we shall see, this is a rather interesting diagram
even though ultimately it does not influence the leading-order physics.

5.3. Wetting diagram relations

The cubic and quartic interactions appear to give rise to a plethora of new wetting diagrams.
However, the physics represented by these perturbations is rather simple and can be elegantly
expressed in a more concise fashion. The essential ingredients in this simplification are various
relations between the wetting diagrams which express their reducibility. We will illustrate this
with some examples.

Consider the first wetting diagram appearing in W (1)
3 . To begin, suppose that the wetting

layer has planar area Aw and is of constant thickness �. The integrals are easily evaluated,
yielding

= Aw(e
−κ� − e−2κ�). (68)

This can be expressed diagrammatically

= − (69)

showing that the perturbative diagram is reducible to the DP contributions �1
1 and �2

1. The net
effect of this diagram is, therefore, to simply shift the coefficients

a(0)1 → a1 = a(0)1 + 3ε3 t κ m2
0 (70)

b(0)1 → b1 = b(0)1 − 3ε3 t κ m2
0 (71)

11
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appearing in the DP expression for W . Moreover, a nice feature of the perturbation theory is that
there is no need to keep precise book-keeping concerning such shifts. This can be done exactly
at the end of the calculation once the general diagrammatic structure has been elucidated.

The above expression is not quite the whole relation for the wetting diagram since
interfacial and substrate curvature are not allowed for. More generally, one finds (after a few
integrations)

= + 1
2 − + · · · (72)

where we have introduced a new type of diagram containing a black triangle. The triangle will
always lie on a surface and is interpreted as an integral over the surface with local measure ds
multiplied by the sum of the local principal curvatures, measured in units of κ (to preserve the
units of the diagrams). Thus,

= 1

κ

∫ ∫
dsψds�K (rψ, r�)

(
1

R�1
+ 1

R�2

)
(73)

and similarly if a triangle is placed on the wall. The ellipses in the wetting diagram relation (72)
denote higher-order curvature terms which are negligible.

Similarly, for the second wetting diagram in W (1)
3 , one can write the relation

= 1
3 + 1

18 + · · · (74)

where here the ellipses also include terms involving four tubes that span the surfaces as well as
higher-order curvatures. The same process is also valid for diagrams with two tubes spanning
the surfaces. For example

= 1
3 + · · · . (75)

Again the effect of these diagrams is to shift the coefficient of the�2
1 diagram and add negligible

curvature terms. In the first-order perturbation theory all bar one diagram can be recast as
a sum of the DP diagrams �1

1, �2
1 and �1

2 together with curvature corrections. The only
contribution for which there is no such relation is the X diagram describing the two-tube
pinching process (67), which is not reducible. However, relations involving it do emerge at
second order in perturbation theory.

In summary, three effects emerge at first order in perturbation theory: (1) rescaling of the
coefficients a1, b1 etc, (2) appearance of curvature corrections and (3) introduction of non-
zigzag diagrams describing tube interactions.

6. Second-order perturbation theory for W

At second order, by far the most important contribution arises from the cubic interaction in
��(1). Contributions of order ε2

4 , as well as mixing terms ε3ε4, are small and do not introduce
any new physics. For ease of presentation, we suppose that the potential perturbation has only
one power, ��(1) = κ2 m2−n

0 δmn , and determine the second-order term in

W [�,ψ] = W (0)[�,ψ] + εn W (1)[�,ψ] + ε2
n W (2)[�,ψ]. (76)

Setting n = 3 at the end of the calculation reveals the dominance of the cubic interaction at this
order. The second-order perturbation is

W (2)[�,ψ] = n κ2m2−n
0

2

∫
dr δm(1)

� (δm
(0)
� )

n−1 − A(2)n [�] − B(2)
n [ψ] (77)

12
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where, as in the first-order perturbation theory, functionals A(2)n [�] and B(2)
n [ψ] are introduced

so that, by construction, W (2) vanishes when the interface is delocalized from the wall. They
need not be specified explicitly, as they are automatically generated by the integral in (77).

The second-order term in the potential W depends on the first-order correction to the profile
δm(1)

� , which satisfies

∇2δm(1)
� = κ2 δm(1)

� + n κ2 m2−n
0 (δm(0)

� )
n−1. (78)

Substitution of the DP profile leads to the PDE

∇2δm(1)
� = κ2 δm(1)

� − n(−1)nκ2m0

×
{
(n − 1)t

(
−

)
+ + (n − 1)

(
−

)}
(79)

where we have curtailed the expansion at two tubes spanning the surfaces, and neglected terms
of O(t2). The inhomogeneous PDE can be solved in a standard manner using the same Green’s
function K (r1, r2). Thus, the solution can also be written diagrammatically and, after some
algebra, we find

δm(1)
� = (−1)nn

2

{
(n − 1) δm1

[(
−

)
−
(

−
)]

+ m0

[(
−

)
+
(

−
)

−
(

−
)

+ (n − 1)

(
−

)
− (n − 1)

(
−

)]}
. (80)

Specializing in the dominant cubic interaction (n = 3), we find for the second-order
perturbation in W

W (2)
3 [�,ψ]
κ m2

0

= − 9

4

{
4 t D1

1 + D2
1

}+ O(t2) (81)

where D1
1 and D2

1 denote the following sum of diagrams:

D1
1 = − − + (82)

and

D2
1 = 2 − − + 4 − 4 + 4 − 4 .

(83)

These diagrams determine the rescaling of the coefficients a1 and b1, and also generate
curvature corrections due to the interface. Again, the key to understanding their net effect
is through wetting diagram relations. For example, the following quartic diagram can be
expressed:

= 1
3 + 2

9 + · · · (84)

where the ellipses include higher-order interfacial curvature terms and four-tube diagrams. In
this way, each of the contributions in (81) can be written as a sum of the diagrams

, , (85)

similar to the first-order perturbation theory. If one extends the calculation to allow terms of
order t2, t3 etc, one also encounters wetting diagrams where corona-like tubes emanate from

13
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the substrate. These are, in fact, the same as the diagrams in D1
1 and D2

1 but with the interfacial
and substrate surfaces switched. Thus, for example,

(86)

has a coefficient proportional to t3 and will add higher-order powers of t in the expansion of
a1, and also generate curvature corrections due to the substrate which can be recast in terms of
the diagram

= 1

κ

∫ ∫
dsψ ds� K (rψ, r�)

(
1

Rψ1
+ 1

Rψ2

)
. (87)

Again, the general structure obtained from the first-order perturbation theory is unchanged.
Working to O(t2), one also generates wetting diagrams which are closely related to

the two-tube pinching process which arose in the first-order perturbation from the quartic
interaction. For example,

, (88)

whose coefficient is proportional to t2. The two central black dots in the wetting layer are
connected by a tube-like fluctuation which does not attach to either the wall or the interface.
The connecting tube is necessarily of short length because the corresponding integral is heavily
damped by the kernel K . This is neatly expressed diagrammatically,

= 2 − − + · · · (89)

leading to the rescaling of the coefficients of�2
1,�1

2 and X . Curvature corrections, represented
by the ellipsis, are of negligible importance for two-tube diagrams.

In summary, second-order perturbation theory leads to the same three effects as highlighted
in the first-order calculation: the rescaling of coefficients and the appearance of curvature and
tube-interaction diagrams.

7. The general structure of the non-local binding potential

The general structure of the non-local binding potential functional for short-ranged wetting
is now apparent. Up to ‘two tubes’, the functional has an asymptotic large-distance decay
described by the diagrams

W = a1 + c1 + c2 + b1 + b2 + d1 + · · · (90)

which should be compared with the DP result (27). Thus, going beyond DP generates
curvature terms (shown for one-tube diagrams only) and also a tube-interaction diagram. The
corresponding algebraic expressions are given by equations (24), (73), (87), (25), (26) and (67).
The coefficients are geometry independent and all have power series expansions in the scaling
field t . The leading-order behaviours are

a1

κm2
0

= αt,
b1

κm2
0

= β,
b2

κm2
0

= βt2,

c1

κm2
0

= γ t,
c2

κm2
0

= γ t2,
d1

κm2
0

= χ t2
(91)

and are specified by just four dimensionless constants reflecting the surface exchange symmetry
of W . The coefficients b2, c2 and d1 all vanish as t2, implying that the associated diagrams are
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of negligible importance at critical wetting. The second diagram, describing the curvature
correction due to the α|β interface, is necessarily much smaller than �1

1 and is therefore
also negligible, given that c1 also vanishes at the critical wetting phase boundary. Thus, the
diagrammatic expression for W is the same as calculated using the DP approximation in [1] but
with different numerical coefficients. This is the main finding of our study.

The exact values of the above coefficients can be calculated for the ‘m4’ LGW potential (4),
by matching with mean-field results for specific interfacial and wall configurations. Consider
for example the simplest situation of a flat wall, ψ = 0 and a flat interface �(x) = �. The
corresponding planar binding potential function is defined as

Wπ (�) = W [�, 0]
Aw

∣∣∣∣
�(x)=�

(92)

and can be identified with the diagrams

Aw Wπ (�) = a1 + b1 + b2 + d1 + · · · . (93)

The first three diagrams are of DP type and were discussed in [1]. The new diagram can also
be evaluated exactly

= Aw κ� e−2κ� (94)

implying that there are non-purely-exponential terms in the binding potential. Thus, the binding
potential function necessarily has the general expansion

Wπ (�) = a1e−κ� + (b1 + b2 + d1κ�)e
−2κ� + · · · (95)

with coefficients specified in (91). This is identical to the findings of Fisher and Jin, who
calculated Wπ (�) directly [5]. One advantage of the Green’s function approach is that the
diagram leading to the non-purely-exponential term is isolated and can be evaluated for other
geometries. For example, for spherical interfacial and wall shapes

= √
Aw Aαβ κ �e

−2κ� (96)

where, as in [1], Aw = 4π R2 and Aαβ = 4π (R + �)2 are the areas of the wall and interfacial
configurations, respectively.

We can now determine the coefficients a1, b1, . . . by comparing (95) with the known
asymptotic decay of Wπ for arbitrary potentials��(m). This can be calculated independently
without recourse to perturbation theory. For planar interfacial and wall configurations, the
constrained profile m� ≡ mπ(z; �) satisfies the ‘energy-conservation’ condition

1

2

(
∂mπ

∂z

)2

= �φ(mπ )− W ′
π (�). (97)

This can be integrated, and the large-distance expansion exactly determined. For the ‘m4’
potential (4), we find

a1

κm2
0

= 4t,
b1

κm2
0

= 4

b2

κm2
0

= 4t2,
d1

κm2
0

= 6t2.

(98)

The curvature coefficient γ = −8 can be determined in a similar fashion by considering
spherical wall and interfacial configurations.
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One can go further in this analysis and determine the coefficients for the perturbative
potential (34) to all orders in ε. We only quote the results for a1 and b1

a1

κm2
0

= 8t

2 − ε + √
4 − 3ε

,
b1

κm2
0

= 16

(2 − ε + √
4 − 3ε)2

(99)

which smoothly interpolate between the DP and ‘m4’ theory results.

8. Non-local model for wetting at planar substrates

In this section, we show how all the wetting diagrams appearing in the asymptotic
expansion (90) simplify when the substrate is planar (ψ = 0). Clearly, there is no contribution
from substrate curvature and we write the interfacial model

H [�] = Hαβ[�] + W [�] (100)

with planar binding potential functional (W [�] ≡ W [�, 0])
W [�] = a1 + c1 + b1 + b2 + d1 + · · · (101)

containing two new diagrams compared with the corresponding DP expression. Three of these
diagrams can be evaluated by simply holding the dot (or triangle) on the upper interface fixed
and integrating over the wall:

=
∫

dx
√

1 + (∇�)2e−κ�, (102)

=
∫

dx
√

1 + (∇l)2
(

1

R�1
+ 1

R�2

)
e−κ� (103)

and

=
∫

dx
√

1 + (∇�)2e−2κ� (104)

which are all local contributions to the effective Hamiltonian H [�]. In particular, if ∇� is small,
one can see how each contributes towards a local binding potential function and/or effective
position-dependent stiffness. Note that, if the coefficient c1 of the curvature diagram (103) is
zero, as it is at DP level, the�1

1 diagram (102) determines the leading-order exponential decays
of Wπ (�) and (�). Beyond DP, however, the curvature diagram also contributes to (�).

In contrast, the two remaining diagrams, �2
1 and X , are strongly non-local. As remarked

in [7] application of the convolution theorem reduces the triple integral (25) to a double integral

=
∫ ∫

ds1 ds2e−κ�(x1)S(x12; �̄12) e−κ�(x2) (105)

where �̄12 = (�(x1)+ �(x2))/2 is the mean interfacial height of the two points at the interface.
Here S is a two-body interfacial interaction which decays as a two-dimensional Gaussian

S(x12; �) ≈ κ

4π�
exp

(
−κx2

12

4�

)
(106)

and which controls the repulsion of the interface from the wall. By construction, the integrated
strength of S is unity. There are two features about this effective many-body interaction which
are worth commenting on. Firstly, its range increases as the square root of the film thickness
and, therefore, becomes longer ranged as the interface unbinds. It is this that necessitates a
non-local treatment of short-ranged critical wetting, and is responsible for the breakdown of
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local theories. Also, the same Gaussian interaction (106) follows from a simple saddle-point
evaluation of the integral (25) over the wall. This means that the interaction between two fixed
points on the interface arises due to a connecting tube that reflects off the wall and is of minimal
length. This physical interpretation will be useful in discussions of wetting at non-planar walls,
where an exact convolution evaluation of �2

1 is not available.
Similar arguments apply to the X diagram describing the two-tube interaction, which can

be written

=
∫ ∫

ds1 ds2e−κ�(x1)X (x12; �̄12) e−κ�(x2). (107)

The two-body interaction describing this interaction also depends on the mean interfacial height
only, and is given by

X (x; �) = κ2

4π
�

(
0,
κx2

4�

)
(108)

where �(0, z) is the incomplete gamma function. At large distances, this decays similarly to
the two-dimensional Gaussian (106).

Finally, we mention that in the strict small-gradient limit the non-local Hamiltonian
reduces to

H [�] =
∫

dx

{
(�)

2
(∇�)2 + Wπ (�)

}
+αβ Aw (109)

where the position dependent contributions to the binding potential and stiffness coefficient
have the general decays

W (�) = w10 e−κ� + (w21κ�+w20) e−2κ� + · · · (110)

and

�(�) = s10 e−κ� + (s22 κ
2�2 + s21 κ�+ s20)e

−2κ� + · · · (111)

respectively. All seven coefficients exhibit power-law dependences on the scaling field t and are
determined by the five coefficients a1, b1, c1, b2 and d1. We findw10 ∼ s10 ∼ t , w21 ∼ s22 ∼ t2

and all other coefficients finite at t = 0. These are in precise agreement with the local theory
of Jin and Fisher [4].

9. Discussion

In this paper, we have extended our earlier derivation of a non-local interfacial Hamiltonian for
short-ranged wetting beyond the DP approximation. We have shown that the diagrammatic
method introduced in our first paper combines rather nicely with perturbation theory and
allows us to derive the general structure of the binding potential functional W . While this
contains some new diagrams describing curvature corrections and tube interactions, these
are of negligible importance for wetting. The dominant diagrammatic structure of W is the
same as that derived for the DP model, albeit with slightly shifted coefficients. The values
of these coefficients have been determined exactly. We also showed how all the diagrams in
the asymptotic expansion of W (up to two tubes) simplify for wetting at planar substrates.
While some local contributions are accurately described by a binding potential function and
position-dependent stiffness, the non-local contributions generate weak long-ranged two-body
interfacial interactions, which play a crucial role at critical wetting.

To finish our article, we make a number of remarks concerning the interpretation,
limitations and further extension of the present approach:

17



J. Phys.: Condens. Matter 19 (2007) 416105 A O Parry et al

9.1. New features

Going beyond the DP approximation alters the binding potential functional in three different
ways: rescaling of the coefficients a1, b1 . . ., and the introduction of curvature and tube
interaction diagrams. These effects could have been anticipated on very general grounds. Even
for a free Hamiltonian, going beyond DP alters the surface tension and introduces Helfrich-like
rigidity terms, consistent with morphological expectations. The first two effects merely mirror
those in W . Also, there must be a mechanism which generates non-purely-exponential terms
in the binding potential function Wπ (�) beyond DP. This is fulfilled by the two-tube interaction
diagram X .

9.2. Generalization of the LGW model

One could consider a slightly generalized LGW model in which the coefficient of (∇m)2 is a
function of the order parameter [19]. By expanding this function about m0, it is straightforward
to show that the corresponding first-order perturbation corrections to W are equivalent to cubic,
quartic etc corrections to the DP potential, which we have considered explicitly. The same is
also true of square-Laplacian contributions to H [m], which are equivalent to a shift in the
value of κ plus the aforementioned cubic, quartic and higher-order corrections. In both cases,
the diagrammatic structure of W remains unaltered to first order. Of course, this robustness is
to be expected. As remarked at the end of our first paper, the form of W is necessitated by exact
sum-rule requirements.

9.3. Coupling to a surface field and enhancement

While we have restricted ourselves to fixed boundary conditions at the wall, it is straightforward
to extend the Green’s function method to different kinds of surface boundary conditions. In
particular, one may consider LGW models of the form [17]

H [m] =
∫

dr
{

1
2 (∇m)2 +�φ(m)

}+
∫

dsψφ1(m(rψ)) (112)

where φ1(m) = − g
2 m2 − h1 m describes the coupling to a surface field h1 and enhancement g.

In this case, the divergence theorem generalizes equation (14) to

H (0)[m(0)
� ] = −1

2

∫
ψ

dsψ (m
(0)
� − m0) φ

′
1(m

(0)
� )−

m0

2

∫
�−

ds�∇m(0)
� · n�

− m0

2

∫
�+

ds�∇m(0)
� · n� (113)

where we have used the appropriate boundary condition in the integral over the wall. Similarly,
the diagrammatic expansion for the constrained magnetization reads, in the DP approximation,

δm(0)
� = −m0

(
− + − · · ·

)
+
(

− + − · · ·
)

(114)

where the black squares on the wall denote a convolution of the Green’s function K with an
auxiliary function μ(rψ). This accounts for the variation of the surface magnetization, and is
introduced to satisfy the boundary condition at the wall. For example, for a planar wall, μ
satisfies the integral equation

κ μ(rψ)+ 2 κ m0 = g m0 + h1 + g
∫

dr′
ψ μ(r′

ψ)K
(
r′
ψ, rψ

)
(115)

which can be solved via a Fourier transform. From here, the calculation proceeds as described
in [1], within the DP approximation, and similar to that described herein using perturbation

18



J. Phys.: Condens. Matter 19 (2007) 416105 A O Parry et al

theory. The final result for the two dominant diagrams in W remains unchanged from
equation (1) but with coefficients

a1 = κ

κ − g

8 (h1m0 + g m2
0)

2 − ε + √
4 − 3ε

b1 = −κ + g

κ − g

16 κ m2
0

(2 − ε + √
4 − 3ε)2

(116)

where we have expressed the results as appropriate for the potential (34). As anticipated, the
diagrammatic form is very similar to that described for fixed boundary conditions but with
the advantage that one can now discuss first-order wetting (g > −κ) and tricritical wetting
(g = −κ). The problem of tricritical wetting is particularly interesting because the coefficient
b1 of the second diagram, �2

1, in (1) vanishes. The repulsion from the wall is then determined
by a diagram which generates a term of order e−3 κ� in the usual binding potential function.
This corresponds to the next diagram in the series (90) and involves three tubes, as is discussed
next.

9.4. The dominant three-tube diagram

There are several diagrams involving three tubes which contribute towards the coefficient of
e−3 κ� in Wπ (�). However, there is only one such diagram whose coefficient does not vanish at
t = 0 and is, therefore, necessary for the discussion of tricriticality. The diagram in question
is

= κ

∫
Vw

dr
{∫

ds�K (r�, r)
}3

(117)

and is generated by the cubic interaction in �φ(m). Here, Vw denotes the volume of the
wall. This diagram is the next term in the asymptotic expansion (90) and is strongly non-local.
However, analogous to our previous discussion of �2

1, the diagram simplifies and generates an
effective many-body interfacial interaction between points at the interface. For example, for a
planar wall, the integral reduces to

=
∫ ∫ ∫

ds1 ds2 ds3 e−κ�(x1) e−κ�(x2) e−κ�(x3)T (x12, x23, x13) (118)

where the three-body interaction

T (x12, x23, x13) ∝ λ123 exp
(−λ123 (x

2
12�3 + x2

23�1 + x2
13�2)

)
. (119)

Here,

λ123 = κ

2(�1�2 + �2�3 + �1�3)
(120)

and we have abbreviated �1 = �(x1) etc.
The fluctuation theory of three-dimensional short-ranged tricritical wetting requires a

renormalization-group treatment of the flow of this three-body interaction similar to that
described in [7] for the two-body term S, equation (106), pertinent to critical wetting. We note
that the range of this three-body interaction also increases as the interface depins, implying that
non-local effects are important at this transition.

9.5. Resummation of diagrams within DP

For wetting at a planar wall, it is in fact possible to resum all the diagrams appearing within the
DP approximation, equation (22). This, again, makes use of the idea of effective many-body
interactions, and is possible because in a general diagram �νμ one can integrate exactly over
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any final black dot of the zigzag that is on the wall. Thus, the DP non-local Hamiltonian for
wetting at a planar wall, with fixed boundary conditions, is given by

HDP[�]
αβ

=
∫

ds�(1 + t e−κ�)2 +
∫ ∫

ds1 ds2 ρ(x1)M(x1, x2) ρ(x2) (121)

where

ρ(x) = e−κ�(x) + t e−2κ�(x) (122)

and

M(x1, x2) = S(x1, x2; �̄12)+
∫

ds3M(x1, x3) S(x3, x2; �̄32) e−2κ�(x3) (123)

and S is defined in (106). The first integral generates three local contributions: the surface area,
�1

1 and �1
2. At leading order, the total two-body interaction M is given by S, in which case the

t independent terms in the second integral reduce to �2
1. In fact, the two-body term M is very

well approximated by

M(x1, x2) ≈ S(x1, x2; �̄12)

1 − e−2κ�̄12
(124)

which shows how the higher-order diagrams resum to give a hard-wall repulsion in the two-
body interaction.

9.6. Full diagrammatic structure beyond DP

We have not attempted to classify diagrams that contain three or more tubes. This is much
more cumbersome to do beyond the DP approximation and, with the exception of tricritical
wetting studies, is largely of academic interest only. Nevertheless, such structure must exist as
can be seen from the following argument. We have shown that the X diagram generates a term
κ�e−2κ� in the planar binding potential Wπ (�) whose coefficient is ∝ t2. Naively, this suggests
that the mean-field excess free energy, obtained by minimizing Wπ (�), contains a higher-order
logarithmic singularity t4 ln |t|. However, such a contribution does not exist as can be seen
from the full mean-field calculation for the LGW model. This must mean that, when evaluated
at the equilibrium mean-field wetting layer thickness, the term t2X in Wπ exactly cancels with
higher-order diagrams which generate terms of order tκ�e−3κ� and tκ�e−4κ�. Indeed, such
diagrams can be readily identified in the perturbation theory. This is strongly suggestive that at
least some higher-order diagrams can be grouped together systematically.

Further extensions and applications of this work, including a discussion of correlation
function structure and the presence of long-ranged forces, will be discussed in future papers.
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